3D Anatomic Modeling Laboratories Overview

Innovations in 3D printing and patient care

People undergoing new, uncommon or complex surgeries at Mayo Clinic may benefit from access to the clinic's expertise in 3D anatomic models. This technology helps with surgical planning, patient education and medical education.

The 3D anatomic modeling laboratories of the Department of Radiology use 3D printing to help doctors tailor the treatment of adults and children based on their exact anatomy. Studies in peer-reviewed medical journals show that the use of 3D-printed models improves surgical outcomes.

Anatomic modeling laboratories are available at the clinic's campuses in Arizona, Florida and Minnesota. Mayo Clinic is a leader in the movement to bring this technology into hospitals for the benefit of all people.

Seeing into the future: Transforming surgery through technology

[MUSIC PLAYING – PRINTER PRINTING]

Jonathan M. Morris, M.D., Medical Director, Anatomic Modeling Unit, Mayo Clinic: I'm often heard saying that a picture is worth a thousand words and that a model is worth a thousand pictures.

[MUSIC PLAYING]

A Mayo Clinic Production

With Moxie Pictures

PURSUING POSSIBLE

SEEING INTO THE FUTURE

[MUSIC PLAYING – PRINTER PRINTING]

This technology, it's really all about the patient. 3D printing has changed what we can do for them and how we do it. It's opened up new avenues of treatment that weren't possible before.

And it all started almost 20 years ago.

2006

The first case that led us to start down the road of 3D printing was the conjoined twins. So we had a set of girls who connected at the abdomen and chest. The surgeon and the radiologist would be working to try and understand the anatomy because eventually, you're going to have to try and separate them. Do they share a liver? Do they share intestines?

So one of the surgeons said, Can we make a physical copy of their liver? And they said, Well, why don't we 3D print it? So the first one we did, we outsourced, and it came back not looking like a liver. So we worked with the Department of Engineering to create some of the first models that were 3D printed. And it was the first time where a group of surgeons could hold a patient's liver in their hands outside the body. There were multiple surgeons from different subspecialties that had to talk about what they were going to do, and they used the model as a vehicle of communication in a way that you just can't from a 2D picture. You now have this new tool in your toolbox.

Our mission is to provide the best quality care. There are a whole host of patients that come with really complex problems that 3D printing helps solve. That 3D printed liver was the catalyst of what we've become today.

Eric J. Moore, M.D., Head and Neck Surgeon, Chair of Otolaryngology, Mayo Clinic: The 3D printing lab used to be a single room in a closetlike space. And now it's this beautiful sixth floor of the hospital. It's really almost surreal. You walk in and whole models of the thorax with the heart and all the blood vessels are being spun out.

Basel A. Sharaf, M.D., D.D.S., Plastic and Reconstructive Surgeon, Mayo Clinic: We're lucky to have one of the world's best 3D printing facilities that we speak about at a point of care. So meaning at the point of care of the patient, you're doing this at the hospital. And this is, I think, unique to the Mayo Clinic.

Peter S. Rose, M.D., Orthopedic Tumor Surgeon, Mayo Clinic: The 3D printing lab is open in the hospital. So it's not off site. As a surgeon, I walk up there between cases. I walk up there during rounds to check in on things.

Doctors discussing scans on a monitor: So you can see that there's a large tumor. You can see how intimately the vessels are draped over the front of it? Right. That's the biggest problem for us surgically to take the sides of the vessels. So, what do we see about the relationship of the aorta and the cava?

Dr. Morris: 90% of every patient that comes to Mayo Clinic will have some form of radiologic scan. Of that one scan, there might be 13,000 images, 13,000 images in four different phases, looking at arteries, veins, tumor, ureter, all of this information. An engineer is going to have to segment out every slice in order to make a 3D printed model. And we probably do about 3,000 models per year.

Each one of these printer rooms does something different. So this printer does powder-based printing. So each layer was being laid down layer by layer, a new layer of powder was coming in, and then it was dropping down and doing it over and over again until you get a 3-dimensional object. These printers are another technology. If you can imagine like a hot glue gun making a circle and then making another circle and then making another circle, you could start to build a 3D object.

This is another print technology. We use this to make full-color anatomic models. So if we want something like that's full color that has multiple small parts like this that has multiple small vessels, like these vessels of the pulmonary artery, or if we want to build training modules like this pulmonary tree with all the lymph nodes around it.

My goal is to help aid in the suffering of another human being. And this technology can provide better care to a greater number of people.

Doctor and technician talking: It would be great if we could remove part of the skull in the back. Yeah, to show better the tumor. That. Oh, yes. And I like that you removed the first cervical vertebra because that's like the approach that we're going to talk to the patient about. So that's really helpful.

Maria Peris Celda, M.D., Ph.D., Neurosurgeon, Mayo Clinic: Each tumor is different. For instance, we can see that this is really in the center of the base of the skull. So this is a tumor that is difficult to access. There's possibility of an approach through the nose. But there's also possibility of an approach through the side. That was important to decide what was best for the patient. I could touch and feel in real size what the tumor and the anatomy look like. And that has really changed my practice.

Here is the 3D model. You can see the tumors coming towards the front of their face.

Dr. Moore: Our planning is much better. 3-dimensional modeling has taken all the guesswork out of it, and it's made the process far more precise. These are really long operations. We used to have to take out the tumor, clear our margins, envision the defect, measure the hole, harvest the fibula, take that up, cut it, see if it fit. With this precise modeling, one of us will be taking out the tumor, the other one will be taking out the fibula, actually cut that in place while the legs still hooked up, these blood vessels are still hooked up, so that as soon as the tumor is out, this is ready to go. Then that patient can spend several hours less on the operating table and get a lot less IV fluid. And that translates into a lot quicker recovery.

Dr. Peris Celda: Every model is a case. But it's not just a case. It's a patient with a family. What were their fears and their anxieties?

Dr. Moore.: A model really helps us understand exactly where the tumor is. It's like a tremendous 3-dimensional roadmap. And this allows Dr. Price and I to make these really precise cuts.

Doctor and patient talking: So this is how we're going to put that back. Yeah. Okay. So this is, you know, your leg bone there that we're going to cut and bend into shape to rebuild your jaw bone and then we're going to put three implants in there, so we're going to get teeth in there. We'll get you chewing again. Yeah, that sounds like a really poor deal, though, pulling out seven, you only give me three back.

Dr. Rose: There are tremendous uncertainties for patients, and that leads to anxieties. Many of the patients who are referred to us have very rare tumors, and they may not have a good understanding of it. The ability to sit down with them with a model that shows their exact anatomy can be very valuable to build trust and build comfort as they move forward with the treatment of a rare tumor.

Doctor and patient's family member talking: Can I see the finished product? Oh, yeah. Yeah. So that's his leg bone there. Okay. We're going to cut it.

Dr. Sharaf: It's one thing to show them a CT scan or a diagram, but it's really another level of communication when they see their own 3D printed model. We can actually tell them, this is what we're going to do for you. These are the bones that we have to move. This is the symmetry we're trying to establish, and it brings a lot of clarity for the patient.

Doctor and patient's family member talking: Well, that model is amazing to be able to see. Yeah, isn't that incredible?

A. Noelle Larson, M.D., Orthopedic Surgeon, Mayo Clinic: Hi. How are you Olive? Every time I open a door and go into a clinic room, there's a family waiting for me that has a very eager expectation that I'm going to be able to help their child. It does look like your curve has progressed a little bit over the last few months, so I'm really glad we have this scheduled. It's getting to be the kind of scoliosis that could cause problems down the road later in life.

I tell my patients, Mayo has one or more of everything, and that really allows us to leverage the knowledge and the techniques and the technology to do surgeries that are not possible elsewhere. Mayo has really been a leader nationally in this field.

While you're asleep, we make an incision over your back, and the incision is kind of something like this from the top to the bottom. Move the muscles out of the way, place rods and screws over the back, and then we connect the screws to the rods and pull the spine into a straighter position.

We're dealing with unique patients, patients that have a deformity that's probably different from every other child in the world. Having a customized model is critical. At the end of the procedure, we roughen up the bone, and that kind of tricks the body into thinking that it had a fracture. And it kind of sets off this whole cascade of bone healing. And then all the areas that are spanned by the rods heal into a solid sheet of bone.

Dr. Rose: 3D modeling is incredibly helpful in operating on young children. Because on a scan, every CT scan looks the same size. But in real life, the anatomy for children is very different. 3D printed model in a child allows you to truly visualize the anatomy that you'll be dealing with.

Dr. Morris: As we expanded our 3D printing clinical uses, surgeons came to us that wanted simulation tools. It was clear that we could only get to a certain level of fidelity. And I thought, we need someone who has this skill set that's making special effects props for the industry that knows urethane casting, silicone molding, silicone painting, live casting. There's no job description in a 70,000-employee organization that says special effects engineer.

And we were just lucky enough to have Christian Hanson apply who had worked in the special effects industry. Ever since then, we've been making these bespoke custom simulators.

Christian Hanson, Simulation Engineer, Mayo Clinic: I've always been into special effects, makeup effects since high school. You know, I got into sculpture. I got some books on how to do masks and prosthetic makeup and things like that. I had plastic skulls when I was growing up, and I just stare at them. You know, my heart's always been in the makeup effects world. That's what I've always really had a passion for. Right, to put in as much detail, as much realism. I'm constantly pushing to capture, you know, tissue quality, the look of fat and muscle.

This model is a good example of where we use full-color 3D printing and digital painting to replicate the realistic surface of an internal thoracic cavity. It's a combination of the visual realism, and then also trying to get the way that the tissue is going to move and feel. Most of this approach isn't really a standardized way of building a model, so we're kind of making it up as we go to push the limits of what's possible.

Dr. Morris: This is a silicone molded skin that sits inside of a 3D printed base. The outside of this is what the practicing surgeon's going to see. This is going to be put together like that, and then it's going to be inside that cavity. So what the surgeon is going to see is this is going to be all toweled off. So then the surgeon will reach into the chest cavity and have to stop bleeding or other pulmonary trauma that we've built this for.

Daniel L. Price, M.D., Head and Neck Surgeon, Mayo Clinic: We've got a task trainer here for sewing two blood vessels together. So we have to make sure that we do this perfectly when we do it in the operating room. And the best way to do that is to have lots of experience, and we can get a ton of experience without any risk practicing these procedures.

Dr. Moore: We run a simulation program every year with our incoming residents. A surgeon will practice and perfect surgeries maybe a hundred times before they actually ever perform that surgery on a human body.

Dr. Price: I'd give myself a C plus 'cause we've got that little kink over here. I'd give you an A plus for each of these being pretty equal length sutures.

We have a patient coming up who has a tumor that's replaced most of his upper jaw. And we have to remove that tumor and therefore remove half of his upper jaw. And we rebuild that with bone from the leg. We're going to take his leg bone and fold that into the shape of his upper jaw bone. And then we're going to bring that nutrition to that bone by sewing the artery from the leg to an artery in the neck. And this is a task trainer that simulates that portion of the procedure, which is critical to the success.

Dr. Peris Celda: I envision 3D printing being more and more common. This is going to help advance science. This is going to help advance neurosurgery. It's a better result, and that's what we all want. We want the best result for our patients.

Dr. Celda and patient talking: This is the model that we looked at before the surgery, and this is the tumor that we removed. Makes it easier to see exactly what it looks like. It's hard to imagine just looking at the MRI, so, it's really helpful to see that. The model was pretty impressive to be able to see everything and where the tumor was, how big it was. I think it really helped put it into perspective. Looking at the model definitely made it feel more real.

So this is the tumor that we saw in the model. And here we see, after the tumor resection, how your spinal cord and the bottom of your brain really expanded.

I'm feeling pretty good, actually, yeah, surprisingly, pretty pretty good. On the road to recovery, definitely through the worst part, I think. Getting that tumor out was key. And now it's just recovering from here.

Dr. Morris: Since that set of conjoined twins, it's hard to believe how much time has passed and how far we've come. We're growing at an exponential rate. At some point, you need more space, more staff. So we built another 3D printing center at Jacksonville. We've expanded our operation to drive care. Now, another part of the country is doing the same exact thing that we're doing in Rochester.

Robert A. Pooley, Ph.D., Medical Physicist, Technical Director of the Anatomic Modeling Unit, Mayo Clinic: This is the anatomic modeling unit at Mayo Clinic in Florida. We work with physicians on campus, surgeons on campus, radiologists on campus. This is an evolving technology. There are not very many places around the country doing this.

Kingsley O. Abode-Iyamah, M.D., Neurosurgeon, Mayo Clinic: You can see how severe scoliosis is. This patient has previously undergone a fusion surgery. And so you can see this solid bone that has grown back here. Being able to look at things that we're not able to see just looking at traditional imaging gives you that comfort level to tackle more complex cases. So day to day function.

Jeffrey J. Janus, M.D., FACS, Head and Neck Cancer Surgeon, Chair of Otolaryngology, Mayo Clinic: The better service to the patient, the better care delivered to the patient as a result of this technology is immeasurable. And when you think about academic medicine, you think about how we're educating the next generations of surgeons. And so this technology isn't just about 3D printing, it's about 3-dimensional assessment and 3-dimensional tools. There's a ton that can be done with education in virtual space.

Dr. Morris: So virtual reality, it allows you to deal in educational spaces. We can build museum environments or O.R. environments. And that allows people to be trained in all of these different types of surgical approaches. Skull-based neurosurgery is a really steep learning curve. Traditionally, if you want to learn from Dr. Peris Celda or any of the skull-based surgeons, you have to physically be near them.

And what we're creating at Mayo Clinic are immersive environments to get you up to speed faster.

Dr. Moore: Medicine and surgery is an apprenticeship art, and you spend years doing it by repetition over and over. Think of how that educational process can be accelerated, just by all of the virtual practice that you could do, I think it's going to revolutionize the way we do surgical education.

Dr. Morris: When you went and got that CT scan, all that gave us images of your body one slice at a time. So what we've done is we've taken all those slices, and we've created a 3D model. So this is an image of you. That's your arms, that's your skeleton. And if you look back over your shoulder, you'll see where that green thing is is where the tumor is.

Dr. Sharaf: VR and AR is really the future of surgery, and artificial intelligence is going to play a big role.

Dr. Morris: This is a young woman who is 13 years old, who has a progressive curvature in her spine, which is really progressing fast over four months. And typically, in order to be able to make a model of this, a technologist would have to level by level hand color in each bone. But now that we have this AI algorithm, not only can it segment the bones, it can auto label which bone it is. Now we can go from a scan to this in about 4 minutes. The next step beyond the segmentation, beyond making the 3D models faster, are those predictive algorithms.

Dr. Sharaf: Let's say someone had a eye socket fracture on both sides, a case where everything is broken. The AI can actually tell you this is what this should look like. This is the best anatomic alignment of the fracture you're dealing with. Then this can be 3D printed. This is going to be really revolutionary for complex facial reconstruction.

Dr. Rose: The question is, can the next advance be what's called bioprinting? Instead of just an implant, can we attach antibiotics to that implant? Can we attach chemotherapy to an implant? And I think that variable will be our next frontier.

Dr. Morris: It's a tool that each surgeon that's used it has come back and said, This allowed me to do things in a way that I couldn't do before. Part of my mission in the last 10 years is to kind of be an evangelist of 3D printing and medicine because most patients will never come to Mayo Clinic. And unless we're helping people around the world, we're not impacting patients in the way that we feel this technology can. The mission of Mayo Clinic is the needs of the patient come first. This technology supports the mission. We're doing what's best for the patient. It's not about us, as surgeons, as physicians, as technologists, as innovators, that it's all for the patient.

PURSUING POSSIBLE

See how we are transforming healthcare at mayoclinic.org/possible.

[MUSIC PLAYING]

How it works

Accurate 3D anatomic models are based on people’s imaging results, such as CT or MRI scans. Before printing a 3D model, radiologists process the scans with sophisticated software to first create a virtual model color coded for each tissue type. Then one or more printer technologies are used to print, layer by layer, a life-size 3D model of the patients' anatomy.

The printer's jetting technology uses UV light to harden thin layers of liquid resin as it builds the structure one layer at a time. Most models are printed in plastic. Sometimes they're made of flexible materials so that surgeons can practice a surgical technique on a more lifelike model.

Applying technology to personalize treatment

Head and neck 3D printing for reconstruction

Jonathan M. Morris, M.D., Radiology, Mayo Clinic: There's really no hospital system that has built as much infrastructure around 3D printing as Mayo has. We've done a lot of studies in the field of head and neck cancer and 3D printing and how they're complementary. Some of those complementary studies just show better understanding of the patient's specific anatomy before entering the operating room. With patient-specific virtual surgical planning and cutting guides, you can save up to 2 hours in the operating room, which means less time for a patient under anesthesia. And we get a better outcome because of all the design ahead of time.

We've developed a specialty called point-of-care manufacturing. All the manufacturing as the physicians inside the hospital, so there's no translation needed. We go from CT scan to three-dimensional model of complex cancer in every area of the body, but particularly in head and neck, quite seamlessly. We're combining surgery, biomedical engineering and radiology all in one place to create not just the 3D printed models, but also the virtual surgical planning.

We take the imaging with the patient's anatomy and tumor and vascularity, and then we print those out in a life-size three-dimensional way and give them to the surgeon as kind of a roadmap.

Daniel L. Price, M.D., Otorhinolaryngology, Mayo Clinic: We're all used to looking at two-dimensional images of patients and CT scans and MRIs. And 3D modeling takes that 2D image and turns it into something that you can hold in your hands and really understand what's the patient's anatomy. Having guides that are custom fit to their jaw, to their bone that we're taking from another part of their body to reconstruct them so that we can get perfect bone-to-bone contact and make them look as much like they did prior to ever having a cancer diagnosis.

But you really have to get it perfect the first time. We have the opportunity to practice, plan and make it perfect on a computer before we ever get to the operating room. We found that patients had less complications long term when we use 3D modeling. They were less likely to have a plate break, and they were less likely to have that bone fracture or nonunion when we use 3D modeling.

Dr. Morris: Another advantage is patient consent. When you let the patient hold their own skull or their own mandible or their own tumor in their hands, then you can start using the model as a communication vehicle. Mayo Clinic is an integrated multidisciplinary team. So instead of just surgeon and neuroradiologists meeting to discuss cases, now we have surgeon, neuroradiologist, biomedical engineers, and 3D printing capabilities all in the same care team.

Dr. Price: We excel at complex patient care. And I think that's where our efficiency and the expertise of all of our colleagues to take care of those complex patients really comes into play.

At Mayo Clinic, radiologists and surgeons are teaming up to discover every possible detail about complex cases, before the operation. Use of virtual modeling and 3D-printed models can mean that patients experience less pain, shorter hospital stays and quicker recoveries.

3D printing can be a valuable tool for surgeons, who may use a 3D anatomic model specific to a patient to explain, plan or even practice surgery. During the digital preparation stage before printing, doctors may use the images for virtual surgical planning. After printing, being able to hold the anatomic model before beginning surgery may help in understanding anatomic anomalies or additional information that may change the surgical approach.

Isaac Garcia's story: Bone cancer care at Mayo Clinic

Sarah Garcia, Isaac's wife: Isaac is the kind of person who is so energetic, and he loves doing things with his children. And he loves being outdoors. And, just, he's very adventurous and exciting. And I think that's part of why I fell in love with him to begin with.

Isaac Garcia, cancer survivor/Mayo Clinic patient: My name is Isaac Garcia. I'm 38 years old and I live in Rio Rancho, New Mexico. I'm married to Sarah Garcia, and we've been married for 15 years. In late 2014, I started having a dull pain in my groin. And I was referred to a urologist by my local primary care doctor, which led to a misdiagnosis and an unneeded surgery. And it ended up delaying me finding out the real problem. So then I was referred to an orthopedic specialist here in Albuquerque. And the orthopedic specialist thought, since I rode dirt bikes a lot, that I probably damaged something in a crash and it was nothing big, it was tendonitis. Let's get an MRI and we'll see what's in there, and it's not going to be a big deal.

Sarah Garcia: So we went to see the doctor and he came in and said, "I have bad news for you. You look like what's going on is a malignant tumor in your bone. You need to see an orthopedic oncologist. My secretary will give you information." And he left the room.

Isaac Garcia: My wife and I were just floored. We cried a lot. It was not good news, you know. It was horrifying news, actually.

Sarah Garcia: I was very afraid that a diagnosis of a bone cancer meant he wouldn't be here. We drove all around that day trying to get in to see an orthopedic oncologist. The wait times were over six weeks or more to even speak to a doctor. So I called my boss because I wasn't in any position to go to work the next day. And he told me don't give up, there's other places. Go wherever you have to go. So I Googled "best bone cancer doctor" and Mayo hospital came up.

Isaac Garcia: So my wife contacted the Mayo Clinic in Phoenix, and they told us to fax my MRI report and some of my information to them and and they would get back to us. And that was on a Monday. And they called back the next day on that Tuesday and said be here Friday.

Christopher Beauchamp, M.D., Consultant, Orthopedic Surgery, Mayo Clinic in Arizona: After we completed all of the tests and investigations and performed a biopsy, the diagnosis was a chondrosarcoma. It's a malignant bone tumor involving a very challenging, difficult location, and that was his hip socket. A chondrosarcoma is a purely surgical problem. There's no medical or any other treatment options available for it. And the surgical treatment for this, for him, was to remove his entire hip joint, the ball and socket joint. Fortunately, we didn't have to remove any of the important muscles around his hip, but that presents a difficult problem to reconstruct for him.

Isaac Garcia: And there was basically three options, and one of them was just removal and you don't put anything back in. So they remove your hip socket and the top of your femur and they don't put anything back in. It's called a flail hip. And then the other one was to use the pelvic bone from a cadaver. And they, you know, make it fit and hope that it takes. Dr. Beauchamp really didn't like that idea either. He said that the best thing is a 3D printed titanium implant.

Dr. Beauchamp: The subsequent treatment of removing the hip joint has become almost the holy grail of orthopedic oncology. We can do it better than we've been doing before. To be able to do the resection, to print the model, to design an implant, and the technology is there.

Sarah Garcia: Yeah, Dr. Beauchamp came out to tell us "it was a home run," is the words he used to describe the surgery. He said, "I got all of it. It's clean margins. I got it all. The cancer is gone."

Isaac Garcia: Because of the Mayo Clinic, I'm back, you know, back to living a normal, good life. I just have a whole new appreciation for how the little things that you usually take for granted, they all mean a lot now. I have a whole new appreciation for life.

Sarah Garcia: I would like to tell Dr. Beauchamp, thank you so much. To make such a huge impact on my husband's life. And because of that, my life and my kids. By using this incredible technology that isn't everywhere else, he offered such a good outcome. He did such a good job. I would tell him thank you.

A team-based approach

A team uses a 3D-printed model to prepare for a surgical procedure Innovating with 3D anatomic models

Surgeons use the point-of-care manufacturing capabilities of the Mayo Clinic 3D anatomic modeling laboratories to conduct surgical rehearsals next to the operating room.

At Mayo Clinic nearly every medical and surgical specialty has accessed and benefited from the services of the anatomic modeling laboratories and the 3D models they produce. These specialties include pediatric otorhinolaryngology (ear, nose and throat), orthopedic surgery, oncologic surgery and cardiovascular surgery. Surgeries for which 3D-printed anatomic models are proved to be helpful include head and neck surgery, complex facial or airway reconstruction, heart surgery, lung surgery, joint reconstruction, and tumor removal.

These 3D models also play an important role in education and are used by Mayo Clinic's medical students, residents, fellows and experienced surgeons learning new or uncommon procedures.

Innovating with 3D modeling

The anatomic modeling laboratories:

  • Have produced more than 6,000 models
  • Produced Mayo Clinic's first model in 2006 to help the surgical team plan a complex surgery to separate conjoined twins
  • Created models that have become the standard of care for multiple uses, including jawbones that have guided over 100 jawbone removals (mandiblectomies) and 300 hearts

Mayo Clinic physicians, scientists and engineers continually advance the study and practice of 3D modeling in surgery.

Research and innovation

Mayo Clinic experts in 3D anatomic modeling conduct research to develop new solutions that improve treatment. See a list of publications about 3D anatomic modeling by Mayo Clinic researchers on PubMed, a service of the National Library of Medicine.

See physician staff

Nov. 14, 2024