Laboratorios de modelado anatómico tridimensional Panorama general

Innovaciones en impresión 3D y la atención al paciente

Las personas que se someten a cirugías nuevas, poco comunes o complejas en Mayo Clinic pueden beneficiarse del acceso a la experiencia de la clínica en modelos anatómicos tridimensionales. Esta tecnología colabora con la planificación quirúrgica, la educación del paciente y la educación médica.

Los laboratorios de modelado anatómico tridimensional del Departamento de Radiología utilizan la impresión tridimensional para ayudar a los médicos a adaptar el tratamiento de adultos y niños en función de su anatomía exacta. Los estudios que figuran en revistas médicas revisadas por colegas muestran que el uso de modelos impresos tridimensionales mejora los resultados quirúrgicos.

Los laboratorios de modelado anatómico están disponibles en los centros médicos de la clínica en Arizona, Florida y Minnesota. Mayo Clinic es líder en el movimiento que lleva esta tecnología a los hospitales para el beneficio de todas las personas.

Seeing into the future: Transforming surgery through technology

[MUSIC PLAYING – PRINTER PRINTING]

Jonathan M. Morris, M.D., Medical Director, Anatomic Modeling Unit, Mayo Clinic: I'm often heard saying that a picture is worth a thousand words and that a model is worth a thousand pictures.

[MUSIC PLAYING]

A Mayo Clinic Production

With Moxie Pictures

PURSUING POSSIBLE

SEEING INTO THE FUTURE

[MUSIC PLAYING – PRINTER PRINTING]

This technology, it's really all about the patient. 3D printing has changed what we can do for them and how we do it. It's opened up new avenues of treatment that weren't possible before.

And it all started almost 20 years ago.

2006

The first case that led us to start down the road of 3D printing was the conjoined twins. So we had a set of girls who connected at the abdomen and chest. The surgeon and the radiologist would be working to try and understand the anatomy because eventually, you're going to have to try and separate them. Do they share a liver? Do they share intestines?

So one of the surgeons said, Can we make a physical copy of their liver? And they said, Well, why don't we 3D print it? So the first one we did, we outsourced, and it came back not looking like a liver. So we worked with the Department of Engineering to create some of the first models that were 3D printed. And it was the first time where a group of surgeons could hold a patient's liver in their hands outside the body. There were multiple surgeons from different subspecialties that had to talk about what they were going to do, and they used the model as a vehicle of communication in a way that you just can't from a 2D picture. You now have this new tool in your toolbox.

Our mission is to provide the best quality care. There are a whole host of patients that come with really complex problems that 3D printing helps solve. That 3D printed liver was the catalyst of what we've become today.

Eric J. Moore, M.D., Head and Neck Surgeon, Chair of Otolaryngology, Mayo Clinic: The 3D printing lab used to be a single room in a closetlike space. And now it's this beautiful sixth floor of the hospital. It's really almost surreal. You walk in and whole models of the thorax with the heart and all the blood vessels are being spun out.

Basel A. Sharaf, M.D., D.D.S., Plastic and Reconstructive Surgeon, Mayo Clinic: We're lucky to have one of the world's best 3D printing facilities that we speak about at a point of care. So meaning at the point of care of the patient, you're doing this at the hospital. And this is, I think, unique to the Mayo Clinic.

Peter S. Rose, M.D., Orthopedic Tumor Surgeon, Mayo Clinic: The 3D printing lab is open in the hospital. So it's not off site. As a surgeon, I walk up there between cases. I walk up there during rounds to check in on things.

Doctors discussing scans on a monitor: So you can see that there's a large tumor. You can see how intimately the vessels are draped over the front of it? Right. That's the biggest problem for us surgically to take the sides of the vessels. So, what do we see about the relationship of the aorta and the cava?

Dr. Morris: 90% of every patient that comes to Mayo Clinic will have some form of radiologic scan. Of that one scan, there might be 13,000 images, 13,000 images in four different phases, looking at arteries, veins, tumor, ureter, all of this information. An engineer is going to have to segment out every slice in order to make a 3D printed model. And we probably do about 3,000 models per year.

Each one of these printer rooms does something different. So this printer does powder-based printing. So each layer was being laid down layer by layer, a new layer of powder was coming in, and then it was dropping down and doing it over and over again until you get a 3-dimensional object. These printers are another technology. If you can imagine like a hot glue gun making a circle and then making another circle and then making another circle, you could start to build a 3D object.

This is another print technology. We use this to make full-color anatomic models. So if we want something like that's full color that has multiple small parts like this that has multiple small vessels, like these vessels of the pulmonary artery, or if we want to build training modules like this pulmonary tree with all the lymph nodes around it.

My goal is to help aid in the suffering of another human being. And this technology can provide better care to a greater number of people.

Doctor and technician talking: It would be great if we could remove part of the skull in the back. Yeah, to show better the tumor. That. Oh, yes. And I like that you removed the first cervical vertebra because that's like the approach that we're going to talk to the patient about. So that's really helpful.

Maria Peris Celda, M.D., Ph.D., Neurosurgeon, Mayo Clinic: Each tumor is different. For instance, we can see that this is really in the center of the base of the skull. So this is a tumor that is difficult to access. There's possibility of an approach through the nose. But there's also possibility of an approach through the side. That was important to decide what was best for the patient. I could touch and feel in real size what the tumor and the anatomy look like. And that has really changed my practice.

Here is the 3D model. You can see the tumors coming towards the front of their face.

Dr. Moore: Our planning is much better. 3-dimensional modeling has taken all the guesswork out of it, and it's made the process far more precise. These are really long operations. We used to have to take out the tumor, clear our margins, envision the defect, measure the hole, harvest the fibula, take that up, cut it, see if it fit. With this precise modeling, one of us will be taking out the tumor, the other one will be taking out the fibula, actually cut that in place while the legs still hooked up, these blood vessels are still hooked up, so that as soon as the tumor is out, this is ready to go. Then that patient can spend several hours less on the operating table and get a lot less IV fluid. And that translates into a lot quicker recovery.

Dr. Peris Celda: Every model is a case. But it's not just a case. It's a patient with a family. What were their fears and their anxieties?

Dr. Moore.: A model really helps us understand exactly where the tumor is. It's like a tremendous 3-dimensional roadmap. And this allows Dr. Price and I to make these really precise cuts.

Doctor and patient talking: So this is how we're going to put that back. Yeah. Okay. So this is, you know, your leg bone there that we're going to cut and bend into shape to rebuild your jaw bone and then we're going to put three implants in there, so we're going to get teeth in there. We'll get you chewing again. Yeah, that sounds like a really poor deal, though, pulling out seven, you only give me three back.

Dr. Rose: There are tremendous uncertainties for patients, and that leads to anxieties. Many of the patients who are referred to us have very rare tumors, and they may not have a good understanding of it. The ability to sit down with them with a model that shows their exact anatomy can be very valuable to build trust and build comfort as they move forward with the treatment of a rare tumor.

Doctor and patient's family member talking: Can I see the finished product? Oh, yeah. Yeah. So that's his leg bone there. Okay. We're going to cut it.

Dr. Sharaf: It's one thing to show them a CT scan or a diagram, but it's really another level of communication when they see their own 3D printed model. We can actually tell them, this is what we're going to do for you. These are the bones that we have to move. This is the symmetry we're trying to establish, and it brings a lot of clarity for the patient.

Doctor and patient's family member talking: Well, that model is amazing to be able to see. Yeah, isn't that incredible?

A. Noelle Larson, M.D., Orthopedic Surgeon, Mayo Clinic: Hi. How are you Olive? Every time I open a door and go into a clinic room, there's a family waiting for me that has a very eager expectation that I'm going to be able to help their child. It does look like your curve has progressed a little bit over the last few months, so I'm really glad we have this scheduled. It's getting to be the kind of scoliosis that could cause problems down the road later in life.

I tell my patients, Mayo has one or more of everything, and that really allows us to leverage the knowledge and the techniques and the technology to do surgeries that are not possible elsewhere. Mayo has really been a leader nationally in this field.

While you're asleep, we make an incision over your back, and the incision is kind of something like this from the top to the bottom. Move the muscles out of the way, place rods and screws over the back, and then we connect the screws to the rods and pull the spine into a straighter position.

We're dealing with unique patients, patients that have a deformity that's probably different from every other child in the world. Having a customized model is critical. At the end of the procedure, we roughen up the bone, and that kind of tricks the body into thinking that it had a fracture. And it kind of sets off this whole cascade of bone healing. And then all the areas that are spanned by the rods heal into a solid sheet of bone.

Dr. Rose: 3D modeling is incredibly helpful in operating on young children. Because on a scan, every CT scan looks the same size. But in real life, the anatomy for children is very different. 3D printed model in a child allows you to truly visualize the anatomy that you'll be dealing with.

Dr. Morris: As we expanded our 3D printing clinical uses, surgeons came to us that wanted simulation tools. It was clear that we could only get to a certain level of fidelity. And I thought, we need someone who has this skill set that's making special effects props for the industry that knows urethane casting, silicone molding, silicone painting, live casting. There's no job description in a 70,000-employee organization that says special effects engineer.

And we were just lucky enough to have Christian Hanson apply who had worked in the special effects industry. Ever since then, we've been making these bespoke custom simulators.

Christian Hanson, Simulation Engineer, Mayo Clinic: I've always been into special effects, makeup effects since high school. You know, I got into sculpture. I got some books on how to do masks and prosthetic makeup and things like that. I had plastic skulls when I was growing up, and I just stare at them. You know, my heart's always been in the makeup effects world. That's what I've always really had a passion for. Right, to put in as much detail, as much realism. I'm constantly pushing to capture, you know, tissue quality, the look of fat and muscle.

This model is a good example of where we use full-color 3D printing and digital painting to replicate the realistic surface of an internal thoracic cavity. It's a combination of the visual realism, and then also trying to get the way that the tissue is going to move and feel. Most of this approach isn't really a standardized way of building a model, so we're kind of making it up as we go to push the limits of what's possible.

Dr. Morris: This is a silicone molded skin that sits inside of a 3D printed base. The outside of this is what the practicing surgeon's going to see. This is going to be put together like that, and then it's going to be inside that cavity. So what the surgeon is going to see is this is going to be all toweled off. So then the surgeon will reach into the chest cavity and have to stop bleeding or other pulmonary trauma that we've built this for.

Daniel L. Price, M.D., Head and Neck Surgeon, Mayo Clinic: We've got a task trainer here for sewing two blood vessels together. So we have to make sure that we do this perfectly when we do it in the operating room. And the best way to do that is to have lots of experience, and we can get a ton of experience without any risk practicing these procedures.

Dr. Moore: We run a simulation program every year with our incoming residents. A surgeon will practice and perfect surgeries maybe a hundred times before they actually ever perform that surgery on a human body.

Dr. Price: I'd give myself a C plus 'cause we've got that little kink over here. I'd give you an A plus for each of these being pretty equal length sutures.

We have a patient coming up who has a tumor that's replaced most of his upper jaw. And we have to remove that tumor and therefore remove half of his upper jaw. And we rebuild that with bone from the leg. We're going to take his leg bone and fold that into the shape of his upper jaw bone. And then we're going to bring that nutrition to that bone by sewing the artery from the leg to an artery in the neck. And this is a task trainer that simulates that portion of the procedure, which is critical to the success.

Dr. Peris Celda: I envision 3D printing being more and more common. This is going to help advance science. This is going to help advance neurosurgery. It's a better result, and that's what we all want. We want the best result for our patients.

Dr. Celda and patient talking: This is the model that we looked at before the surgery, and this is the tumor that we removed. Makes it easier to see exactly what it looks like. It's hard to imagine just looking at the MRI, so, it's really helpful to see that. The model was pretty impressive to be able to see everything and where the tumor was, how big it was. I think it really helped put it into perspective. Looking at the model definitely made it feel more real.

So this is the tumor that we saw in the model. And here we see, after the tumor resection, how your spinal cord and the bottom of your brain really expanded.

I'm feeling pretty good, actually, yeah, surprisingly, pretty pretty good. On the road to recovery, definitely through the worst part, I think. Getting that tumor out was key. And now it's just recovering from here.

Dr. Morris: Since that set of conjoined twins, it's hard to believe how much time has passed and how far we've come. We're growing at an exponential rate. At some point, you need more space, more staff. So we built another 3D printing center at Jacksonville. We've expanded our operation to drive care. Now, another part of the country is doing the same exact thing that we're doing in Rochester.

Robert A. Pooley, Ph.D., Medical Physicist, Technical Director of the Anatomic Modeling Unit, Mayo Clinic: This is the anatomic modeling unit at Mayo Clinic in Florida. We work with physicians on campus, surgeons on campus, radiologists on campus. This is an evolving technology. There are not very many places around the country doing this.

Kingsley O. Abode-Iyamah, M.D., Neurosurgeon, Mayo Clinic: You can see how severe scoliosis is. This patient has previously undergone a fusion surgery. And so you can see this solid bone that has grown back here. Being able to look at things that we're not able to see just looking at traditional imaging gives you that comfort level to tackle more complex cases. So day to day function.

Jeffrey J. Janus, M.D., FACS, Head and Neck Cancer Surgeon, Chair of Otolaryngology, Mayo Clinic: The better service to the patient, the better care delivered to the patient as a result of this technology is immeasurable. And when you think about academic medicine, you think about how we're educating the next generations of surgeons. And so this technology isn't just about 3D printing, it's about 3-dimensional assessment and 3-dimensional tools. There's a ton that can be done with education in virtual space.

Dr. Morris: So virtual reality, it allows you to deal in educational spaces. We can build museum environments or O.R. environments. And that allows people to be trained in all of these different types of surgical approaches. Skull-based neurosurgery is a really steep learning curve. Traditionally, if you want to learn from Dr. Peris Celda or any of the skull-based surgeons, you have to physically be near them.

And what we're creating at Mayo Clinic are immersive environments to get you up to speed faster.

Dr. Moore: Medicine and surgery is an apprenticeship art, and you spend years doing it by repetition over and over. Think of how that educational process can be accelerated, just by all of the virtual practice that you could do, I think it's going to revolutionize the way we do surgical education.

Dr. Morris: When you went and got that CT scan, all that gave us images of your body one slice at a time. So what we've done is we've taken all those slices, and we've created a 3D model. So this is an image of you. That's your arms, that's your skeleton. And if you look back over your shoulder, you'll see where that green thing is is where the tumor is.

Dr. Sharaf: VR and AR is really the future of surgery, and artificial intelligence is going to play a big role.

Dr. Morris: This is a young woman who is 13 years old, who has a progressive curvature in her spine, which is really progressing fast over four months. And typically, in order to be able to make a model of this, a technologist would have to level by level hand color in each bone. But now that we have this AI algorithm, not only can it segment the bones, it can auto label which bone it is. Now we can go from a scan to this in about 4 minutes. The next step beyond the segmentation, beyond making the 3D models faster, are those predictive algorithms.

Dr. Sharaf: Let's say someone had a eye socket fracture on both sides, a case where everything is broken. The AI can actually tell you this is what this should look like. This is the best anatomic alignment of the fracture you're dealing with. Then this can be 3D printed. This is going to be really revolutionary for complex facial reconstruction.

Dr. Rose: The question is, can the next advance be what's called bioprinting? Instead of just an implant, can we attach antibiotics to that implant? Can we attach chemotherapy to an implant? And I think that variable will be our next frontier.

Dr. Morris: It's a tool that each surgeon that's used it has come back and said, This allowed me to do things in a way that I couldn't do before. Part of my mission in the last 10 years is to kind of be an evangelist of 3D printing and medicine because most patients will never come to Mayo Clinic. And unless we're helping people around the world, we're not impacting patients in the way that we feel this technology can. The mission of Mayo Clinic is the needs of the patient come first. This technology supports the mission. We're doing what's best for the patient. It's not about us, as surgeons, as physicians, as technologists, as innovators, that it's all for the patient.

PURSUING POSSIBLE

See how we are transforming healthcare at mayoclinic.org/possible.

[MUSIC PLAYING]

Cómo funciona

Los modelos anatómicos tridimensionales precisos se basan en los resultados de los procedimientos por imágenes que se realizan a las personas, como las tomografías computarizadas o las resonancias magnéticas. Antes de imprimir un modelo tridimensional, los radiólogos procesan las exploraciones con un software sofisticado para crear primero un modelo virtual con codificación por color para cada tipo de tejido. A continuación, se utilizan una o más tecnologías de impresión para imprimir, capa por capa, un modelo tridimensional en tamaño real de la anatomía del paciente.

La tecnología de inyección de la impresora utiliza luz ultravioleta para endurecer capas finas de resina líquida a medida que construye la estructura de una capa a la vez. La mayoría de los modelos se imprimen en plástico. A veces se hacen de materiales flexibles para que los cirujanos puedan practicar una técnica quirúrgica en un modelo más realista.

Aplicación de tecnología para personalizar el tratamiento

Impresión en 3D de cabeza y cuello para reconstrucción

Dr. Jonathan M. Morris, Radiología, Mayo Clinic: Realmente no hay ningún otro sistema hospitalario que haya creado tanta infraestructura en torno a la impresión en 3D como Mayo Clinic. Hemos realizado muchos estudios sobre el cáncer de cabeza y cuello, las impresiones en 3D y cómo se complementan. Algunos de esos estudios permiten comprender mejor la anatomía específica del paciente antes de entrar al quirófano. Con un plan virtual para la cirugía específica del paciente y guías para hacer las incisiones, podemos reducir la duración de la cirugía hasta 2 horas, lo que significa menos tiempo de anestesia para el paciente. Además, obtenemos mejores resultados gracias a todo el diseño hecho con antelación.

Hemos creado una especialidad llamada fabricación en el lugar de atención médica. Los médicos fabrican todo dentro del hospital, de modo que no hace falta transformar nada. Pasamos sin ningún problema desde la tomografía computarizada hasta el modelo tridimensional de un cáncer complejo en cualquier área del cuerpo, pero especialmente en la cabeza y el cuello. En un solo lugar, combinamos la cirugía, la ingeniería biomédica y la radiología para no solamente crear los modelos impresos en 3D, sino también planificar virtualmente la cirugía.

Las imágenes de la anatomía del paciente y del tumor sumadas a la vascularización nos permiten crear impresiones tridimensionales y en tamaño real que entregamos al cirujano como una especie de mapa.

Dr. Daniel L. Price, Otorrinolaringología, Mayo Clinic: Todos estamos habituados a ver imágenes bidimensionales de los pacientes en tomografías computarizadas y resonancias magnéticas. El modelo en 3D toma esa imagen en 2D y la convierte en algo que puedes sostener con tus manos para realmente entender la anatomía del paciente. Tener guías hechas a medida de la mandíbula y del hueso que se va a extraer de otra parte del cuerpo permite reconstruirlos para que el contacto entre ellos sea perfecto y se obtenga una apariencia similar a la que había antes del diagnóstico de cáncer.

Pero hay que realmente lograr que salga perfecto la primera vez. Tenemos la oportunidad de practicar, planificar y perfeccionarlo en una computadora, antes de entrar al quirófano. Sabemos que los pacientes tienen menos complicaciones a largo plazo cuando utilizamos modelos en 3D. Hay menos probabilidades de que se rompa una placa, que se produzca una fractura ósea o que haya falta de consolidación al utilizar modelos en 3D.

Dr. Morris: Otra ventaja es el consentimiento del paciente. Cuando el paciente puede sostener con sus manos su propio cráneo, su mandíbula o su tumor, ese modelo sirve como conducto para la comunicación. Mayo Clinic cuenta con un equipo multidisciplinario integrado. En lugar de que solo los cirujanos y los neurorradiólogos se reúnan para analizar los casos, ahora dentro del mismo equipo de atención médica tenemos cirujanos, neurorradiólogos, ingenieros biomédicos e impresiones en 3D.

Dr. Price: Nos destacamos por brindar atención médica compleja. Creo que allí es donde realmente interviene la eficiencia y la experiencia de todos nuestros colegas a fin de tratar a estos pacientes con casos complejos.

En Mayo Clinic, radiólogos y cirujanos forman un equipo para descubrir cada detalle posible sobre casos complejos, antes de la operación. El uso de modelos virtuales y modelos impresos en 3D puede implicar que los pacientes experimenten menos dolor, tengan hospitalizaciones más cortas y recuperaciones más rápidas.

La impresión tridimensional puede ser un instrumento valioso para los cirujanos, que pueden utilizar un modelo anatómico tridimensional específico de un paciente para explicar, planificar o incluso practicar la cirugía. Durante la fase de preparación digital antes de la impresión, los médicos pueden utilizar las imágenes para la planificación quirúrgica virtual. Después de la impresión, poder sostener el modelo anatómico antes de comenzar la cirugía puede ayudar a comprender las anomalías anatómicas u obtener información adicional que puede cambiar el enfoque quirúrgico.

La historia de Isaac García: Tratamiento del cáncer óseo en Mayo Clinic

Sarah García, esposa de Isaac: Isaac es una persona llena de energía y le encanta hacer actividades con sus hijos. Le encanta pasar tiempo al aire libre. Es muy aventurero y exuda entusiasmo. Creo que, en parte, me enamoré de él por eso.

Isaac García, superviviente de cáncer y paciente de Mayo Clinic: Soy Isaac García. Tengo 38 años y vivo en Río Rancho, Nuevo México. Estoy casado con Sarah desde hace 15 años. A finales de 2014, empecé a tener un dolor sordo en la ingle. Mi médico local de atención primaria me remitió a un urólogo, lo que llevó a un diagnóstico erróneo y una cirugía innecesaria. Todo esto terminó retrasando el descubrimiento de mi problema real. Después me derivaron a un especialista en ortopedia aquí, en Albuquerque. El especialista en ortopedia pensó que como hago mucho enduro, posiblemente me lesioné algo en un choque y que no era gran cosa, sino una tendinitis. Vamos a hacer una resonancia magnética para ver qué hay allí, y no será gran cosa.

Sarah García: Fuimos al médico y cuando entró a vernos, dijo: "Tengo malas noticias. Parece que es un tumor maligno en el hueso. Tienes que ir a un oncólogo ortopédico. Mi secretaria les dará la información". Y se fue.

Isaac García: Mi mujer y yo nos derrumbamos. Lloramos mucho. No eran buenas noticias. Realmente, las noticias eran horrorosas.

Sarah García: Tenía mucho miedo de que el diagnóstico de cáncer de hueso significase que no iba a poder estar con nosotros. Estuvimos todo el día dando vueltas para tratar de encontrar a un oncólogo ortopédico. Los tiempos de espera eran de seis semanas o más solo para hablar con el médico. Llamé a mi jefe porque no estaba en condiciones de ir a trabajar al día siguiente. Me dijo que no me diese por vencido, que había otros sitios. Ve adonde debas ir. Así que en Google busqué "mejor médico para cáncer de hueso" y apareció Mayo Hospital.

Isaac García: Mi mujer se puso en contacto con Mayo Clinic en Phoenix y nos dijeron que les enviásemos por fax el informe de mi resonancia magnética y algunos datos más, luego de lo cual, ellos se comunicarían con nosotros. Eso fue un lunes y nos llamaron al día siguiente, el martes, para decirnos que fuésemos el viernes.

Dr. Christopher Beauchamp, médico especialista, Cirugía Ortopédica, Mayo Clinic en Arizona: Tras completar todas las pruebas e investigaciones y realizar una biopsia, el diagnóstico fue de condrosarcoma. Se trata de un tumor óseo maligno, ubicado en un lugar muy complicado y problemático como es el acetábulo de la cadera. El condrosarcoma es un problema puramente quirúrgico. No existe ninguna otra opción médica ni tratamiento. En este caso, el tratamiento quirúrgico consistía en extirpar toda la articulación de la cadera, tanto la cabeza como el acetábulo. Afortunadamente, no era necesario extirpar ninguno de los músculos importantes de la cadera, porque eso presenta un problema difícil para la reconstrucción.

Isaac García: En general, había tres opciones y una de ellas era de solamente extirpar, sin reemplazar nada. Es decir, extirpar tanto el acetábulo de la cadera como la parte superior del fémur y no reemplazarlos con nada. Es una hemipelvectomía interna sin reconstrucción. Otra opción es usar la pelvis de un cadáver. Hay que hacerla encajar y esperar que funcione bien. Al Dr. Beauchamp no le gustó esa idea tampoco. Dijo que la mejor opción era un implante de titanio impreso en 3D.

Dr. Beauchamp: El tratamiento dado de extirpar la articulación de la cadera casi se ha convertido en el logro máximo de la oncología ortopédica. Podemos hacerlo mejor que nunca. Tenemos la tecnología necesaria para poder hacer la resección, imprimir el modelo y crear un implante.

Sarah García: Sí, pues, el Dr. Beauchamp salió a decirnos "lo logramos", y esas fueron las palabras que usó para describir la cirugía. Dijo: "Extirpé todo. Los márgenes están limpios. Lo extraje todo y ya no hay cáncer".

Isaac García: Gracias a Mayo Clinic he vuelto a tener una vida normal, una buena vida. Aprecio mucho más las cosas pequeñas que normalmente se dan por sentadas, y ahora son muy importantes. Valoro mucho más la vida.

Sarah García: Me gustaría decirle al Dr. Beauchamp que se lo agradezco muchísimo. El causó un gran impacto en la vida de mi marido, en la mía y en la de mis hijos. Gracias a esta tecnología tan increíble que no existe en ningún otro sitio, él nos ayudó a conseguir un resultado muy bueno. Hizo un trabajo impresionante. Le diría que muchas gracias.

Un enfoque basado en el trabajo en equipo

Un equipo utiliza un modelo impreso en 3D para prepararse para un procedimiento quirúrgico Innovación con modelos anatómicos en 3D

Los cirujanos utilizan las capacidades de fabricación en el punto de atención de los laboratorios de modelado anatómico en 3D de Mayo Clinic para realizar ensayos quirúrgicos junto a la sala de operaciones.

En Mayo Clinic, casi todas las especialidades médicas y quirúrgicas han tenido acceso a los laboratorios de modelado anatómico y a los modelos 3D que producen, y se han beneficiado de sus servicios. Entre estas especialidades se incluyen la otorrinolaringología pediátrica (oído, nariz y garganta), la cirugía ortopédica, oncológica y cardiovascular. Las cirugías para las cuales los modelos anatómicos impresos en 3D han demostrado ser útiles incluyen la cirugía de cabeza y cuello, la reconstrucción facial o de las vías respiratorias complejas, la cirugía cardíaca, la cirugía pulmonar, la reconstrucción de las articulaciones y la extracción de tumores.

Estos modelos 3D también desempeñan un papel importante en la educación, ya que estudiantes de medicina, médicos residentes, médicos fellow y cirujanos experimentados de Mayo Clinic los utilizan para aprender procedimientos nuevos o poco frecuentes.

Innovación con modelado tridimensional

Los laboratorios de modelado anatómico:

  • Produjeron más de 6000 modelos.
  • Se produjo el primer modelo de Mayo Clinic en 2006 para ayudar al equipo quirúrgico a planificar una cirugía compleja para separar a gemelos unidos.
  • Se crearon modelos que se han convertido en el estándar de cuidado para múltiples usos, incluidas las mandíbulas que han guiado más de 100 extirpaciones de mandíbula (mandibulectomías) y 300 corazones.

Los médicos, científicos e ingenieros de Mayo Clinic avanzan continuamente en el estudio y la práctica del modelado tridimensional en cirugía.

Investigación e innovación

Los expertos de Mayo Clinic en modelado anatómico 3D realizan investigaciones para desarrollar nuevas soluciones que mejoren el tratamiento. Consulta una lista de publicaciones sobre modelado anatómico en 3D realizadas por investigadores de Mayo Clinic en PubMed, un servicio de la Biblioteca Nacional de Medicina.

Consulta al personal médico

Nov. 14, 2024