Clinical Trials 下面列出了当前开展的临床试验。410 研究 Cancer (仅限开放研究). 根据地点、状态和其他条件对此研究列表进行过滤。 Establishment of Preclinical Models from Patients with Gynecological Malignancies Rochester, Minn., Scottsdale/Phoenix, Ariz. Effective treatments for recurrent gynecological cancer are lacking, and there is a need for novel therapeutic options. One of the barriers to improving outcomes in this subgroup of patients is the paucity of tumor models that can mimic patient characteristics to study novel therapies. Patient-derived xenograft (PDX) models are considerate the most representative pre-clinical model of human cancer, recapitulating the key characteristics of the original patient tumor. Other preclincal models to test drug effcicacy includes ex vivo 3D culture and 2D culture systems. In this study, we make and test preclinical models of gynecological cancers (ovarian, fallopian tube, peritoneal, uterine, vulvar, cervix, and vaginal) of any histologic subtype using surplus tumor specimens obtained at the time of routine tumor biopsy procedure, or clinically-indicated surgery. Immune Response to Antigens Jacksonville, Fla. The purpose of this study is to sequence patient germline and tumor samples, and nominate top neoantigen candidates using an in-house developed bioinformatics pipeline, and to validate the neoantigen candidates by laboratory assays using patient peripheral blood immune cells or serum. Female Patients and Female Partners of Patients With Confirmed HPV Associated Oropharyngeal Carcinoma (Pap-Op): Prospective Assessment of HPV Associated Anogenital Pathology Rochester, Minn. The purpose of this study is to determine the incidence of anogenital infection with high-risk HPV serotypes and HPV-associated anogenital lesions in female patients with newly diagnosed HPV(+)OPSCC and female partners of patients with HPV(+)OPSCC, and compare this with retrospective review of exams and paps obtained during routine well woman checks in Rochester MN. Combination Treatment Therapy Approaches for the Treatment of High-Risk Multiple Myeloma, REACH Trial Rochester, Minn., Jacksonville, Fla., Scottsdale/Phoenix, Ariz. The purpose of this study is to estimate the rate of sustained MRD negativity (MRD negative status at any point, with a repeated MRD negative status one year later) in subjects with high-risk multiple myeloma. Innovative CAR-TIL immunotherapy against melanoma Jacksonville, Fla. The chimeric antigen receptor (CAR) T-cell therapy is a revolutionary cellular immunotherapy strategy that has transformed the treatment of B cell malignancies by engineering T cells to recognize B cell specific tumor markers; however, attempts to treat solid tumors with CAR T-cells have identified unique challenges that have rendered CAR T cells less effective against these tumors. Conventional CARs are designed to target tumor-associated antigens, but antigenic heterogeneity and the variable nature of surface antigen expression provide escape mechanisms for solid tumors from CAR T-cell attack. [1, 2] The solid tumor stroma acts as an immunosuppressive cloud that impedes the homing of peripheral CAR T-cells into the tumor microenvironment (TME). The hostile TME can also drive CAR T-cells to functional exhaustion and metabolic dysfunction, thus blunting the therapeutic efficacy of CAR T-cells.[3] Oncolytic viruses or radiation that generate local inflammation in the TME have been shown to promote T cell homing and infiltration [4] but do not address the exhaustion of tumor infiltrating lymphocytes (TILs). The PD-1/PD-L1 cascade allows tumors to evade the immune system by suppressing T cell function within the TME. [5, 6] An ideal adoptive cellular therapy must possess the ability to not only return to the site of the tumor but must also retain cytotoxic potential after a recognition event. We present here a CAR design that allows PD-1 to recognize PD-L1 on the tumor; however, the intracellular CAR design is one that results in T cell activation as opposed to inhibition. We hypothesize that targeting melanoma with a PD-1 (MC9324) CAR TIL therapy would capitalize on the tumor homing machinery of the TIL to drive the CAR TIL to the tumor where engagement of the PD-1 domain of the CAR with PD-L1 on the tumor cell would result in T cell cytotoxic killing. Analyses of Metabolic Agents Following Brain Radiation Rochester, Minn. The purpose of this study is to determine the feasibility of serial cerebrospinal fluid (CSF) assessments to evaluate the pharmacodynamic impact of agents targeting radiation-induced biology administered following completion of brain radiation. A Study of a New Way to Treat Children and Young Adults With a Brain Tumor Called NGGCT Rochester, Minn. The purpose of this study is to monitor outcome to ensure that children and young adults with localized central nervous system (CNS) non-germinomatous germ cell tumors (NGGCT) treated with Induction chemotherapy followed by response evaluation and whole ventricular + spinal canal irradiation (WVSCI) will maintain the excellent 2-year progression free survival (PFS) rate as compared to ACNS0122. Also, to improve disease control by decreasing the number of spinal relapses for patients who achieve a complete response (CR) or partial response (PR) and receive WVSCI as compared to whole ventricular radiation on ACNS1123. Early pancreatic cancer detection Jacksonville, Fla. The primary purpose of this study is to standardize the collection of demographic, clinical, and imaging data, and biosamples for a large high-risk familial Pancreatic Ductal Adenocarinoma (PDAC) cohort at consortium clinical cancer centers, worldwide. A Survey of Pheochromocytoma and Paraganglioma Patient Environment Rochester, Minn. The purpose of this study is to determine the association of environmental, geographic factors, as well as presence of comorbidities associated with hypoxia with development of pheochromocytomas and paragangliomas (PPGL), location of PPGL, and number of PPGL. Cell, Serum, and Buccal Bank for Patients with Chronic Myeloid Disorders and Acute Leukemia Rochester, Minn. This study is being done to store blood, buccal (cheek) cells, genetic material including DNA (deoxyribonucleic acid) and RNA (ribonucleic acid), and bone marrow so that they can be used for laboratory studies that may contribute to finding the causes of disease and factors that may determine disease progression and treatment response. Pagination 临床研究 PrevPrevious Page Go to page 1717 Go to page 1818 Go to page 1919 Go to page 2020 Go to page 2121 NextNext Page 医疗专业人员 Cancer clinical-trials