Most orthopedic surgeons feel somewhat challenged when faced with a complex distal humerus fracture or an established distal humerus nonunion (Figure 1). Obtaining optimal functional outcomes for these patients has traditionally been difficult for multiple reasons. Chief among them are the facts that comminution and bone deficiency complicate reconstructive surgery in an anatomic area with intricate geometry and a high propensity to stiffness and poor function.

“Many patients are left with either a stiff, dysfunctional elbow or a nonunion with gross instability,” explains Joaquin Sanchez-Sotelo, MD, PhD, an orthopedic surgeon specializing in elbow surgery at Mayo Clinic in Rochester, Minnesota. “Fortunately, our elbow group at Mayo Clinic has developed improved fixation techniques and has also been a pioneer in the field of replacement surgery for the salvage of selected fractures and nonunions. These 2 advances have changed the way distal humerus fractures and nonunions are treated all over the world.”

An Improved Principle-Based Fixation Strategy
Orthopedic surgeon Shawn W. O’Driscoll, MD, PhD, developed the principle-based parallel-plating internal fixation technique for both fractures and nonunions (Figure 2). Dr Sanchez-Sotelo helped popularize the technique and independently reviewed the results obtained. “Dr O’Driscoll’s technique provides surprisingly robust fixation even in complex fractures considered unfixable in the past,” explains Dr Sanchez-Sotelo. “Traditional fixation techniques used in the past failed to provide sufficient stability; our technique satisfies 2 major principles: maximal fixation in the distal fragments and true compression at the supracondylar level.”

The details of the principle-based internal fixation technique and the results obtained were published in the American edition of the Journal of Bone and Joint Surgery. In a selected

Figure 1. Distal humerus fractures and nonunions are characterized by severe bone destruction. Modern CT scans provide a better understanding of the complex geometry.
group of complex fractures, results show that no patients experienced hardware failure or fracture re-displacement despite an aggressive physical therapy protocol.

Replacement as a Salvage Option
Mayo Clinic’s Bernard F. Morrey, MD, pioneered the use of replacement arthroplasty for the salvage of selected fractures and nonunions (Figure 3). “Early in my career, the orthopedic community showed reluctance to perform arthroplasty for these conditions. A linked arthroplasty design and a surgical technique that does not violate the triceps provide a low-morbidity and relatively easy procedure for patients with no other alternatives,” explains Dr Morrey. “We just published the long-term results of elbow arthroplasty in distal humerus nonunions, with impressive clinical results and good durability. Some patients returned 20 years after surgery with well-functioning implants,” Dr Sanchez-Sotelo adds.

The study mentioned above, also recently published in the American edition of the Journal of Bone and Joint Surgery, included close to 100 elbow arthroplasties in patients with distal humerus nonunions who were followed for a mean of 6.5 years. Subjective satisfaction and implant survival at 5 years were both higher than 80%.

Innovation Well Served By Team Approach
The close collaboration of 3 elbow surgeons at Mayo Clinic has resulted in the development of 2 innovative orthopedic treatment alternatives that simply did not exist in the past. Patients all over the world now benefit from improved fixation techniques and replacement surgery.

Mayo Clinic and Dr O’Driscoll receive royalties related to development of some of the technologies mentioned in this article.
Knee dislocation caused by violent trauma is a complex, severe injury. Disruption of at least 3 of the 4 major ligaments causes pronounced instability, and the condition is typically a limb-threatening injury because of the combination of vascular and neurologic damage (Figure 1).

There is a lack of high-level evidence available on which to base a systematic approach to evaluation and treatment of knee dislocation patients with multiligament injuries, despite the fact that comprehensive centers of orthopedic excellence like Mayo Clinic regularly treat numerous patients with traumatic knee dislocation. For example, a single orthopedics practitioner at Mayo Clinic has performed 91 cases in the past 3 years.

The unsettled questions and controversies these cases present center on several factors: treatment approach, timing of surgery, selection of grafts for reconstructing ligaments, and postoperative care. Each case is highly individual and the surgical procedures are complex (Figure 2).

The Power of a Study Group
To fill the evidence gap and create better outcomes for more patients by achieving a consensus on best practices, a group of 8 knee surgery specialists from the United States and Canada formed the Knee Dislocation Study Group. The impetus for this international effort came from Mayo Clinic’s Bruce A. Levy, MD, an orthopedic surgeon on the Rochester, Minnesota, campus. Dr Levy was inspired by the clinical successes that resulted after the Canadian Orthopaedic Trauma Group pooled experiences from multiple institutions. The Knee Dislocation Study Group convened its first working session in September 2007.

Explains Dr Levy: “No 2 knee dislocations are exactly alike—except that the decision making involved is always highly challenging. Because of this fact, I found myself reaching out to my mentors for guidance. It was immediately obvious that everybody involved benefits from such a group—all the orthopedic surgeons and all the patients. By pooling our experience and our data, we produce evidence that is more powerful for devising a systematic approach to obtaining optimal outcomes for knee dislocation patients.”

Add Michael J. Stuart, MD, Dr Levy’s Mayo Clinic collaborator: “The power of the group is

Continued on page 7
Published Highlights

Arm, Elbow

Bone Regeneration and Transplant

Brachial Plexus

Foot/Ankle

Hand

Hip

Infection
Larson, A.N., R.R. Razonable, and A.D. Hanssen, Capnocytophaga canimorsus: a novel pathogen for
To learn more about Mayo Clinic’s ongoing orthopedic research, visit mayoresearch.mayo.edu/mayo/research/ortho/index.cfm
Success in Replacing the Metacarpophalangeal Joints and Ulnar Head

Small-bone arthroplasties involving joint implants for finger, wrist, and forearm are often a neglected topic of analyses in the broad orthopedic community, probably because of a historical association with high failure rates.

Over the past decade, innovation has helped change former failure scenarios into success stories. “The progress continues in terms of materials, design, technique, implant technology, and clinical effectiveness for small-bone joint replacements,” explains Richard A. Berger, MD, PhD, a hand surgeon at Mayo Clinic in Rochester, Minnesota. He helped devise Mayo Clinic’s modular, multi-stem and multisize prosthesis for ulnar-head replacement (Avanta uHead). Mayo Clinic hand surgeon Marco Rizzo, MD, adds: “With current advances, experienced arthroplasty teams can generally vastly improve the quality of life for patients disabled by hand pain and functional impairment from degenerative damage or trauma.”

Mayo Clinic Leadership
In 1962, Mayo Clinic hand surgeons pioneered the field of arthroplasty of the small joints of the hand when they first used silicone metacarpophalangeal (MCP) implants in rheumatoid arthritis patients. Mayo continues to lead in both innovation and clinical application of orthopedic discovery to patient care. By doing so, Mayo Clinic hand surgeons continue to offer hope for improved function to patients with advanced arthritic conditions of the hands.

Highlights of Mayo’s contribution to the success of small-joint arthroplasty include
• 1970-present: Development and subsequent refinements to nonconstrained pyrolytic carbon implants for proximal interphalangeal joints (PIP) and MCP joints
• 1970-present: Development and subsequent refinements of metal and plastic surface replacement implants for proximal PIP and MCP joints
• 2001: Development of a metallic ulnar-head implant for patients with unstable forearms secondary to excision of an arthritic ulnar head
• 2007: Development of a metal and plastic sigmoid notch component to match the ulnar-head implant to create an unlinked total joint replacement

Rationale for Ulnar-Head Replacement
The ulnar head is central to forearm biomechanics, stability, and full wrist motion because it is the only fixed, bony, nonmoving support for radial rotation. Rheumatoid arthritis and trauma frequently impair the ulnar head and thus destroy the pain-free proper functioning of the wrist and diminish hand grip strength in older adults. In the past 10 years, advances in implants and technique have shown ulnar-head arthroplasty to be reliable, effective primary treatment when performed at centers of orthopedic excellence (Figure 1).

Replacement of the distal ulnar head may be indicated when nonoperative treatment of the wrist joint does not resolve pain, weakness, and instability, and diagnostic imaging confirms damage to the distal radioulnar joint. Additionally, evidence of failed ulnar-head resection or failed arthroplasty may indicate the need for a salvage procedure. In the presence of these indications, the patient must

Figure 1. A, Preparation of the “socket” for an ulnar-head implant arthroplasty. B, Securing the ulnar-head implant within the soft tissue socket. C, Anteroposterior radiograph after ulnar-head implant surgery.
also have adequate bone health and soft tissue to allow for osseous integration of the implant and tissue stabilization.

MCP Joints
Favorable results can be obtained with the newest generation of implants, nonconstrained pyrolytic carbon arthroplasty for MCP joint arthritis. As evidence, Dr Rizzo cites a published Mayo Clinic team review of 142 arthroplasties (61 patients), in which 130 were primary joint replacements (Figure 2) and 12 were revisions of prior silicone treatments.

The data showed improvements in arc of motion, oppositional pinch, and grip strength. Notes Dr Rizzo: “Preliminary results suggest that pyrolytic carbon MCP joint arthroplasty provides good pain relief, patient satisfaction, and functional improvement in managing osteoarthritis and select cases of rheumatoid arthritis.” He adds that longer follow-up evaluation will help validate these promising early results.

Expertise Creates Options
The biggest challenge now is defining the best candidates for these implants. Because of the laxity of soft tissue in severe rheumatoid arthritis patients, stability is more difficult to achieve with unconstrained implants.

![Figure 2. Pre- and postoperative images after metacarpophalangeal implantation.](image-url)

Notes Dr Rizzo: “Although the implant has worked well in selected patients with rheumatoid arthritis, those who have extensive disease, deformity, or dislocation may do better with the silicone as a fallback option. But each case is unique. It’s important for patients to go to an advanced orthopedic center that can deploy all available options with equal expertise.”

Mayo Clinic and Dr Berger receive royalties related to development of some of the technologies mentioned in this article.
Symposium on Sports Medicine

The 19th Annual Mayo Clinic Symposium on Sports Medicine will be held November 13-14, 2009, in Rochester, Minnesota. Under the leadership of course director Jay Smith, MD, and Mayo Clinic Sports Medicine Center codirectors Michael J. Stuart, MD, and Edward R. Laskowski, MD, Mayo Clinic faculty will offer live demonstrations on clinical anatomy of the hip and hip arthroscopy. The program will also include topics such as ACL injury prevention tactics; management of the unresponsive athlete; clavicle fractures; upper limb nerve injuries; and adolescent athletes with hip pain.

Other highlights include the following:

- **Keynote speaker Stanley A. Herring, MD,** team physician for the Seattle Seahawks and the Seattle Mariners and clinical professor and medical director for spine care, University of Washington, Seattle. A nationally recognized expert in spine disorders, Dr Herring is past president of the North American Spine Society.

- **Invited guest speaker William O. Roberts, MD,** a nationally recognized expert in sports medicine with a special interest in running-related injuries. Professor in the Department of Family Medicine and Community Health at the University of Minnesota Medical School, Minneapolis, Dr Roberts maintains an active clinical practice in St. Paul and serves as medical director for the Twin Cities Marathon. He is a founding member and past president of the American Road Race Medical Society.

- **Invited guest speaker John F. Tomberlin, PT,** director of Mercy SportsCare and Athletic Republic Sports Performance at MercyCare Medical Center, Cedar Rapids, Iowa. A strength and conditioning specialist and fellow in the American Academy of Orthopaedic Manual Physical Therapists, he is a nationally recognized expert on adverse neurodynamic tension in athletes. He will conduct a live demonstration of clinical neurodynamic tests for the athlete’s shoulder.

To Register

For information or to register by telephone call 800-323-2688. To register online, visit http://www.mayo.edu/cme/sports-medicine.html.

International Spine Symposium

The 5th Mayo Clinic International Spine Symposium will be held January 31-February 4, 2010, in Mauna Lani Bay Hotel and Bungalows on the Big Island, Hawaii. Through interactive presentations with leaders in the field the programmatic focus centers on

- Value in spine care
- Motion preservation surgery
- Minimally invasive surgery
- Nonoperative spine care
- Spine tumors

As this issue of Orthopedic Update went to press, details were still being finalized. Mayo Clinic CME personnel are prepared now to answer inquiries and take reservations.

To Register

For information, contact Mayo School of Continuing Medical Education by phone at 800-323-2688 or e-mail at cme@mayo.edu.